On the accuracy and usefulness of analytic energy models for contemporary multicore processors

نویسندگان

  • Johannes Hofmann
  • Georg Hager
  • Dietmar Fey
چکیده

This paper presents refinements to the execution-cache-memory performance model and a previously published power model for multicore processors. The combination of both enables a very accurate prediction of performance and energy consumption of contemporary multicore processors as a function of relevant parameters such as number of active cores as well as core and Uncore frequencies. Model validation is performed on the Sandy Bridge-EP and BroadwellEP microarchitectures. Production-related variations in chip quality are demonstrated through a statistical analysis of the fit parameters obtained on one hundred Broadwell-EP CPUs of the same model. Insights from the models are used to explain the performanceand energy-related behavior of the processors for scalable as well as saturating (i.e., memory-bound) codes. In the process we demonstrate the models’ capability to identify optimal operating points with respect to highest performance, lowest energy-to-solution, and lowest energy-delay product and identify a set of best practices for energy-efficient execution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Technical Report UPC-DAC-RR-2010-2Decomposable and Responsive Power Models for Multicore Processors using Performance Counters

Power modeling based on performance monitoring counters (PMCs) has attracted the interest of many researchers since it become a quick approach to understand and analyse power behavior on real systems. Moreover, several power aware policies use power models to guide their decisions and to trigger low-level mechanisms -e.g. manage processor frequency-. Hence, the information, the accuracy and the...

متن کامل

Proposed Feature Selection for Dynamic Thermal Management in Multicore Systems

Increasing the number of cores in order to the demand of more computing power has led to increasing the processor temperature of a multi-core system. One of the main approaches for reducing temperature is the dynamic thermal management techniques. These methods divided into two classes, reactive and proactive. Proactive methods manage the processor temperature, by forecasting the temperature be...

متن کامل

A Clustering Approach to Scientific Workflow Scheduling on the Cloud with Deadline and Cost Constraints

One of the main features of High Throughput Computing systems is the availability of high power processing resources. Cloud Computing systems can offer these features through concepts like Pay-Per-Use and Quality of Service (QoS) over the Internet. Many applications in Cloud computing are represented by workflows. Quality of Service is one of the most important challenges in the context of sche...

متن کامل

Design of a novel congestion-aware communication mechanism for wireless NoC architecture in multicore systems

Hybrid Wireless Network-on-Chip (WNoC) architecture is emerged as a scalable communication structure to mitigate the deficits of traditional NOC architecture for the future Multi-core systems. The hybrid WNoC architecture provides energy efficient, high data rate and flexible communications for NoC architectures. In these architectures, each wireless router is shared by a set of processing core...

متن کامل

Green Energy-aware task scheduling using the DVFS technique in Cloud Computing

Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018